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ABSTRACT

We present Golden Gate, an FPGA-based simulation tool that de-
couples the timing of an FPGA host platform from that of the target
RTL design. In contrast to previous work in static time-multiplexing
of FPGA resources, Golden Gate employs the Latency-Insensitive
Bounded Dataflow Network (LI-BDN) formalism to decompose the
simulator into subcomponents, each of whichmay be independently
and automatically optimized. This structure allows Golden Gate
to support a broad class of optimizations that improve resource
utilization by implementing FPGA-hostile structures over multi-
ple cycles, while the LI-BDN formalism ensures that the simula-
tor still produces bit- and cycle-exact results. To verify that these
optimizations are implemented correctly, we also present lime, a
model-checking tool that provides a push-button flow for checking
whether optimized subcomponents adhere to an associated cor-
rectness specification, while also guaranteeing forward progress.
Finally, we use Golden Gate to generate a cycle-exact simulator
of a multi-core SoC, where we reduce LUT utilization by up to 26%
by coercing multi-ported, combinationally read memories into sim-
ulation models backed by time-multiplexed block RAMs, enabling
us to simulate 50% more cores on a single FPGA.

1 INTRODUCTION

As the semiconductor industry ventures further into the twilight
of transistor scaling, there is broad consensus that improvements
in computing performance and energy efficiency must come from
innovations higher up in the computing stack. At the same time,
myriad emerging applications, in domains like AI, virtual and aug-
mented reality, and the Internet of Things, depend on the availabil-
ity of higher-performance, more efficient computing systems. As
a result, system architects have turned to specialization: in mod-
ern SoCs, application cores increasingly yield area to specialized
accelerators [8]. However, this specialization begets complexity
that makes these systems harder to build, verify, and program. This
drives the non-recurring engineering (NRE) costs of developing
custom silicon out of reach for all but high-volume markets.

The lack of an affordable full-system simulation technology that
is both fast and accurate is one key driver of these NRE costs. A sim-
ulator that is too slow cannot exercise bugs that manifest deep into
execution and is thus unusable for software development. However,
a faster, less detailed simulator may differ too greatly from the ac-
tual silicon to exhibit the same bugs and performance pathologies,
precluding effective pre-silicon verification and validation.

FPGAs have long been used for prototyping and emulation of
ASICs in both industry [16] and academia [13, 26]. While FPGAs
have great potential as a commercial-off-the-shelf technology that
offers radical speedups over software simulation, no current FPGA-
based system offers the ideal combination of simulation speed,

capacity, affordability, and ease of use. Direct FPGA prototypes are
affordable and fast, but require the user to manually model the
external environment of the device and to invest signficant effort
to meet resource constraints. Commercial emulation platforms offer
automated scaling to larger designs, but suffer from high cost of
entry and pay a large performance cost when partitioning designs
across many FPGAs. While manually time-multiplexed simulators
such as RAMP Gold [23] present large increases in per-FPGA ca-
pacity, they require excessive engineering effort. Recent academic
simulation platforms like FireSim [13] omit capacity-enhancing
optimizations to focus on providing fully automated, open-source
platforms for co-simulation and debugging of networked devices.

In this paper, we contribute Golden Gate, an open-source tool
to enhance FPGA emulation capacity through automatic resource
optimization of FPGA-hosted simulation models derived from ASIC
RTL. These optimizations trade simulation time (FPGA cycles) for
FPGA resources, allowing more of the ASIC to fit on a single FPGA.
While this technique could be applied in a partitioned setting, it
also enables commodity FPGA boards to elastically scale in capacity
to avoid the economic or performance cost of partitioning. While
prior work manually applied these optimizations to develop ab-
stract processor models, Golden Gate is the first to apply them
automatically. We also contribute lime, a push-button checker that
verifies that an optimized model simulates its ASIC source exactly.
Finally, we perform a case study, where Golden Gate and lime
are used to time-multiplex highly ported memories, optimizing a
traditionally FPGA-hostile element of ASIC designs [27]. This en-
ables us to emulate a large RISC-V multiprocessor SoC on a single
FPGA, where a partitioned prototype would otherwise have been
required. To facilitate wider use, Golden Gate has been released
as a new, optimizing compiler for the FireSim simulation platform.

2 PRIORWORK IN FPGA EMULATION

Pre-silicon evaluation of ASICs has long been a core application
for FPGAs [7]. While this takes many forms, including prototyping,
emulation, and hardware-accelerated simulation, each involves
mapping a target system (the device being simulated) onto a host
system that includes one or more FPGAs.

2.1 FPGA Prototyping

Direct FPGA prototypes, where designs are directly mapped onto
FPGA fabric, are a common way to enable pre-silicon software
development and functional validation [1]. Ideally, this would be a
push-button flow, but in reality multiple hurdles often necessitate
the labor-intensive development of an “FPGA version” of the design:

(1) Device capacity: nontrivial ASICs must be partitioned across
multiple FPGAs at the expense of slower execution rates,
longer compile times, and more expensive host platforms [9].



(2) Resource conversions: ASIC power, reset, and clocking struc-
tures do not map directly to the host FPGA and must be
replaced [1, 10].

(3) I/O modeling: I/O devices and environment models may not
map well to the fabric, necessitating adapters for in-situ
prototyping. One recurring example of this issue is the need
to slow down external I/O to match the reduced speed of an
FPGA prototype.

With a traditional FPGA prototype, the burden of overcoming
these hurdles is left to the user.

2.2 Commercial Emulation Systems

Commercial FPGA-based emulation systems generally consist of
a custom hardware platform, along with a set of software tools
to streamline the partitioning and I/O modeling problems [16].
These tools build on advances in inter-chip routing [10, 14] and
time-multiplexing of pins [3] to reduce the speed and productivity
overhead of using multi-FPGA host platforms. Furthermore, they
may offer mechanisms for interfacing with I/O models that are
co-simulated in a software environment [11], which can resolve the
issue of I/O speed matching by gating the clock in the target design
to wait for software. However, these features come at a price: large
monetary cost of entry and slowdowns due to partitioning.

2.3 Decoupled FPGA-Accelerated Simulators

While computer architecture research has long relied on software
simulators in lieu of complete RTL implementations, the RAMP [26]
project aimed to use FPGAs to increase the speed and fidelity of
microarchitectural simulations of manycore systems. To avoid the
resource limitations of FPGA prototypes, RAMP simulators such
as HASim [19] and RAMPGold [23] used optimized RTL timing
models to model FPGA-hostile structures like multi-ported RAMs
over multiple FPGA cycles. This host-target decoupling, the ability
to simulate one target clock cycle over a variable number of FPGA-
host clock cycles, is the hallmark of these decoupled simulators.

To support host-target decoupling, the target machine can be
simulated as a synchronous dataflow graph [18] of models; we give
an example in Figure 1. To simulate one target cycle, a model de-
queues one token from each of its input ports and enqueues a token
into each of its output ports. The simplest RTL implementation
of a model waits for all of its input tokens to be available and all
output ports to be ready before executing; this is a direct application
of Carloni et al. [5]. Simulation models that properly implement
this formalism tolerate latency on the arrival of tokens and may
take variable number of host cycles to compute their outputs. This
makes it possible to apply these optimizations without changing
the target’s RTL behavior.

An important measure of decoupled simulator performance is
the FPGA-Cycle-To-Model-Cycle Ratio (FMR) [20]: the average
number of FPGA cycles elapsed per simulated target cycle over a
full simulation. The simulation rate of a decoupled simulator can
thus be given as fFPGA/FMR. In contrast, a direct FPGA prototype
by definition has FMR = 1 and a resulting simulation rate of fFPGA1.

1In some partitioned FPGA prototypes, “FMR" is actually a fixed number greater than
one to allow for serialization-deserialization of target signals that span multiple FPGAs.

To date, such optimized simulators have seen little adoption,
as their RTL timing models are difficult to design, optimize, and
validate—which for nontrivial models may be far more complex
than simply implementing the target design.

2.4 Transformed Decoupled Simulators

To avoid the challenges of developing custom RTL timing models,
recent work in decoupled simulation, such as FireSim [13], aims to
strike a balance between prototyping and decoupled simulation. In
these simulators, handwritten models are largely replaced with a
single cycle-exact model that is transformed from ASIC RTL.

These model transformations have been simple: they automati-
cally add handshaking interfaces that effectively “pause” the for-
ward progress of the target to allow the model to stall while it waits
for tokens. This technique enables co-simulation of network inter-
faces to model networks of thousands of target machines [13] and
FPGA-accelerated modeling of the external DRAM interfaces of the
target ASIC [4]. While this resembles the clock-gating approach
used to support transactional emulation [11], the flexible decou-
pled interface with the target simplifies instrumentation to support
power modeling and debugging features [15]. However, while the
explicit decoupling of the target is similar to the RAMP simulators,
the ASIC RTL used within the model is largely unchanged, yielding
the same resource utilization challenges as FPGA prototypes.

3 ON COMPOSITIONAL SIMULATORS

With Golden Gate, we extend the notion of a decoupled simulator
with compositional simulation, which enables RAMP-style resource
optimizations to be automatically applied to subcomponents of the
target design. By introducing internal decoupling to the design,
different parts of the target design may be optimized for the host
platform in heterogeneous ways. While RAMP Gold [23] employed
internal decoupling to connect a time-multiplexed processor model
simulating 64 independent cores with the rest of the simulator, it
did so in an ad-hoc manner. Automating this approach presents
two main challenges:

(1) Decomposing the simulator into decoupled “islands” that
may be independently optimized.

(2) Expressing optimizations—such as time-multiplexing—as
transforms that modify the “islands” yet still maintain the
correct, cycle-exact behavior of the whole simulator.

To ensure that Golden Gate can produce robust, optimized
FPGA simulators with no human intervention, we must rely on
a formalism that addresses both of these challenges. Therefore,
we model our system as a Latency-Insensitive Bounded Dataflow
Network (LI-BDN) [25] to provide both correctness and forward
progress guarantees.

3.1 The LI-BDN Target Formalism

LI-BDNs are a class of dataflow networks that may be constructed
in correspondence to and represent the behavior of arbitrary syn-
chronous circuits. In this capacity, they implement a deadlock-free,
cycle-accurate simulation of reference RTL design, while allowing
the underlying implementation to use variable-latency handshaking
interfaces among its constituent subcomponents.

A general LI-BDN is defined by a set of restrictions:



4
0

Sink

Input ASource

Input B

Source

1

0

Model
Token
Target Value

4
Cycle = 1

Sink

Input ASource

Input B

Source

1

0

4

Sink

Input ASource

Input B

Source

5

Cycle = 2

0

Figure 1: A 32-bit adder model and environment simulating a single cycle of target time.

(1) Nodes of an LI-BDN are connected via bounded queues.
(2) Each node of a LI-BDN must itself be an LI-BDN.
(3) The base case is a primitive LI-BDN, which is a circuit where

all I/O is mediated over handshaking interfaces or channels.
To be a legal primitive LI-BDN, a module must obey the No
Extraneous Dependencies (NED) and Self-Cleaning (SC) formal
properties, described in detail in Section 5. In short, these
properties specify when a primitive LI-BDN is obligated to
produce and accept tokens over its I/O channels.

In the context of simulation, LI-BDNs allow arbitrary partitions
of the input circuit to be mapped to latency-insensitive implemen-
tations, while still correctly modeling its synchronous behavior.
Furthermore, it also defines rules of composition that guarantee
that the composite LI-BDN will correctly simulate the full input
design in aggregate. Finally, the specification for the constituent
primitive LI-BDNs is presented as a concrete set of properties, which
includes the NED and SC properties mentioned above, along with
an obligation that the tokens exchanged on its I/O channels adhere
to a functional relation with the signals crossing the corresponding
partition in the original design. While other formalisms may exist
for demonstrating the theoretical soundness of FPGA simulation
tools, Golden Gate uses the LI-BDN abstraction to enable flexible
optimization and push-button model checking.

3.2 LI-BDNs in Golden Gate

While Vijayaraghavan et al. [25] introduce the concept of emu-
lating synchronous circuits with LI-BDNs, they stop short of im-
plementing that concept in a real simulator; others have since
done so in handwritten simulators. To the best of our knowledge,
Golden Gate is the first tool to automatically produce FPGA-
accelerated simulators structured as LI-BDN networks, and addi-
tionally, lime is the first tool to formally verify primitive LI-BDNs.

4 THE GOLDEN GATE TOOLCHAIN

A major barrier to FPGA prototyping is the necessity to buy in
to a proprietary host FPGA or private cloud platform. Therefore,
Golden Gate is implemented as an extension to FireSim [13], an
open-source tool that enables system designers to simulate their
target RTL designs on commodity FPGAs hosted in Amazon’s AWS

public cloud. FireSim already provides a baseline compiler, MI-
DAS [15], that relies on decoupling to support co-simulation of
models of network and DRAM interfaces. However, it does not
actually apply any optimizations to the transformed target design,
so the resource utlization of the target RTL is nearly identical to
an FPGA prototype. In contrast, Golden Gate adds an optimizing
compiler to significantly reduce resource utilization with minimal
engineering effort.

In order to make Golden Gate as widely applicable as possible,
it is designed to support a variety of optimizations across different
FPGA host platforms. The extensible nature of the compiler makes
it easier to add new optimizations, which are intriniscally supported
by the push-button lime flow.

4.1 Inputs and Outputs

Like FireSim, our compiler consumes an RTL description of the
target specified in FIRRTL [12], an RTL intermediate representation
convenient for expressing compiler transformations. As output,
Golden Gate produces a FIRRTL implementation of LI-BDN cor-
responding to the target. To complete the simulator, this network
is composed with existing FireSim I/O models that produce input
tokens and consume output tokens; this yields a closed system.

4.2 Compiler Organization

TheGolden Gate compiler is divided into two main phases: Target
Transformation and Simulator Synthesis, as shown in Figure 2.

4.2.1 Target Transformation. Here, optimization candidates are
identified and the target’s module hierarchy is mutated into a struc-
ture that corresponds directly with the final LI-BDN. Target trans-
formations are performed as a series of small operations that pre-
serve the target’s RTL timing at every step. This makes it possible
to do logic-equivalence checking on the input and output of each
pass. Each optimization has its own analysis pass, which inspects
the circuit and consumes designer-provided hints captured with
FIRRTL annotations. When the pass finds a candidate subcircuit,
it wraps it in a module and then labels the module with annota-
tions that indicate how it should optimized and how its I/O will
correspond to token ports. Once all candidates are identified, the
wrapper modules are "promoted" to the top of the module hierarchy.
This process is then repeated for the next optimization.
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Figure 2: Golden Gate Compiler

4.2.2 Decomposed Target Form. At the end of target transforma-
tion, the RTL is in decomposed target form, in which every top-level
module corresponds with a model in the eventual LI-BDN. All mod-
ules are labeled with annotations that indicate how they should
be transformed or optimized, and how their inputs and outputs
should be coalesced into token channels. Again, here the RTL is
functionally identical to the source RTL.

4.2.3 Simulator Synthesis. Here, model-implementation passes
construct the LI-BDN by replacing modules with a model based on
its annotation. This fundamentally changes the structure of the cir-
cuit, but as we will show, this can be verified using lime (Section 5).
Model-implementation passes come in two varieties:

(1) Transformation-based: these modify the corresponding tar-
get RTL module to produce a primitive LI-BDN.

(2) Generator-based: these inspect the structure of the target
RTL to parameterize an LI-BDN model generator.

4.3 The Default LI-BDN Transform

The default model-implementation pass is transformation-based
and converts a target module into a primitive LI-BDN as follows:

(1) For each output channel, it finds all input channels to which
it is combinationally connected (CC).

(2) For each output channel, it generates a predicate, firing,
that is asserted when all CC input tokens are available, and
a register, fired, that is set when that output channel has
enqueued but the rest of the model has not yet advanced.

(3) It gates all state updates with a finishing predicate. When
this signal is high, all fired bits are reset.

(4) It drives finishing by taking the conjunction across all
output channels of the term firedo ∨ firingo .

4.4 Adding New Optimizations

Adding a new optimization consists of adding an analysis pass to
the target transformation, to identify, wrap and label a candidate
subcircuit, and adding a model-implementation pass to replace this
block with an LI-BDN model in simulator synthesis. To ease inte-
gration of such passes, including the multi-ported RAM optimizer
in Section 6, we next introduce lime, a push-button model checker
for simulation LI-BDNs.

5 LIME: VERIFYING MULTI-CYCLE MODELS

With Golden Gate, we demonstrate that pervasive area optimiza-
tion can be applied to a large, FPGA-accelerated hardware simulator
by substituting FPGA-hostile elements of the design for optimized
models. However, these optimizations are only practical if it is pos-
sible to establish that the optimized simulator maintains cycle- and
bit-exact correspondence with the original target design. Fortu-
nately, the LI-BDN formalism provides a framework to do this, if
it can be shown that each model satisfies formal equivalence and
deadlock-avoidance guarantees. However, this is nontrivial, as the
the LI-BDN notion of equivalence is distinct from the trace con-
tainment concept used in other hardware equivalence checks. To
address this gap, we introduce lime, a push-button tool for checking
the correctness of Golden Gate simulation models.

5.1 Structure of the LIME Checker

At a high level, verifying LI-BDN simulator implementations in-
volves checking the three properties introduced in Section 3: Partial
Implementation (PI) of the reference design, along with the No
Extraneous Dependencies (NED) and Self-Cleaning (SC) properties
that guarantee that the simulator will not deadlock. lime achieves
this by automatically generating a Bounded Model Checking (BMC)
problem for each of the three properies for a given model, with each
BMC case structured as an input to the UCLID5 [22] verification
system. The lime flow is depicted in Figure 3, which shows the
how a model-checking problem is created from FIRRTL circuits
specifying the model (Model.fir) and associated target compo-
nent (RTL.fir). lime has two primary phases: it translates the
FIRRTL inputs into the semantics of UCLID5, and then it constructs
a model-checking problem for each of the LI-BDN properties.

5.1.1 A UCLID5 Backend for FIRRTL. To check formal properties
of FIRRTL circuits like PI, NED, and SC, it is necessary to have both
a formal model of FIRRTL semantics and an automated tool for
representing FIRRTL circuits in a model-checking environment. To
this end, we developed a UCLID5 backend for the FIRRTL compiler.
As described in [12], the FIRRTL compiler is composed of many
lowering passes that progressively remove higher-level constructs
from the IR until it is in a lowered form. At this point, one of multiple
emitters is invoked to produce output in a preferred form. Typically,
designs are emitted as Verilog for use by downstream CAD tools,
whereas lime uses our UCLID5 emitter.
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We targeted the UCLID5 modeling system as it is open-source,
and provides strong support for compositional modeling across both
synchronous and asynchronous systems. While lime was designed
to check LI-BDN properties, the UCLID5 backend is considerably
more versatile. Using Chisel and FIRRTL, designers can write anno-
tations that carry UCLID5 assumptions, invariants, and properties
to be emitted alongside the UCLID5 implementation of the circuit.
This enables designers of hardware generators to co-generate verifi-
cation collateral, easing the challenge of verifying a generator with
a large space of possible output designs. Since lime is intended to
help hardware designers write formally verified LI-BDN models,
we extended UCLID5 to optionally emit VCD waveforms in order
to make counterexamples easier to interpret.

5.1.2 Modeling Environment Generation. The Environment Genera-
tor is a Python program that generates UCLID5 testbenches to verify
Partial Implementation, NED, and SC for a given reference RTL and
LI-BDN model pair. Since each of these has slightly different model-
ing environment requirements, we split checking these properties
into three separate testbenches. To enable a “push-button” verifica-
tion tool, we use metadata produced during FIRRTL compilation
to establish correspondences among the token channels of the LI-
BDN simulation model and the I/O of the reference RTL component,
and lime automatically specializes the generated environment to
have the appropriate structure. Because appropriate invariants for
k-induction must constrain internal state of the simulation model,
they require introspecting on the model implementation in a man-
ner that is currently incompatible with our automatic testbench
generation. Instead, we use Bounded Model Checking to verify the
three properties, and leave an inductive approach to future work.

5.2 Model Checking LI-BDNs

In all lime property checking flows, the general structure of the
model resembles the diagram shown in Figure 4. Here, the system
is the LI-BDN that simulates a given reference RTL component, and
the environment is the set of sources that generate input tokens
for the LI-BDN and the set of sinks that consume output tokens.
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Figure 4: Partial Implementation Model

In this section, “simulation LI-BDN” is used in lieu of “simulation
model,” to avoid confusion with the “model” from model checking.

When checking PI, NED, and SC properties of simulation LI-
BDNs, the environments always model the sources and sinks as
abstract queues. Input queues nondeterministically present tokens
to the simulation LI-BDN and track the number of consumed to-
kens (dequeue count). Output queues use credits rather than a finite
capacity, with a credit nondeterministically being added each step.
The advantage of this is that it allows for arbitrary token arrivals
and output back-pressure while offering guarantees that are not
respected by randomizing inputs to the LI-BDN; specifically, valid-
ity of source data and readiness of sinks are stable, meaning that a
source will not cease to have a valid token if it is not consumed and
a sink will not cease to be ready if it is not provided with a token.

5.2.1 Partial Implementation. PI guarantees that the behavior of
the simulation LI-BDN will be a cycle-exact representation of a par-
ticular Synchronous Sequential Machine (SSM), if its environment
is itself a cycle-exact simulation of the inputs of the SSM. Formally,
Vijayaraghavan et al. [25] define PI as:

A BDN R partially implements an SSM S iff
(1) There is a bijective mapping between the inputs of S and

[the input tokens of] R, and a bijective mapping between
the outputs of S and [the output tokens of] R.

(2) The output histories of S and R match whenever the input
histories match, i.e.,

∀n > 0
I (k) for S and R matches (1 ≤ k ≤ n)

⇒O(j) for S and R matches (1 ≤ j ≤ n)

To provide matching input histories and compare output his-
tories, the PI model composes the simulation LI-BDN with the
reference SSM RTL. For each input channel, a nondeterministic se-
quence of input values is provided to the two implementations: as
synchronous, cycle-by-cycle signal for the SSM, and as an abstract
source FIFO model for the LI-BDN. On the output side, abstract
sinks record the output token histories of the SSM, which are then
compared with the cycle-by-cycle output histories of the SSM.

Using this construction, the environment forces the input his-
tories of the LI-BDN and the SSM to match, while capturing their



output histories. In this environment, we define PI as a conjunction
of invariants, each ensuring for some output oj that the output
histories of the SSM and LI-BDN match according to correspon-
dence operator =̂ based on the bijection between output tokens and
outputs. Here, the model check must assert the conjunction of the
PI invariant PIj for every oj ∈ O .

Invariant PIj
∀i ∈ [0, cycles) i < enq_cntj ⇒ SSM_histj (i) =̂ BDN_histj (i)

5.2.2 No Extraneous Dependencies. Vijayaraghavan et al. [25] for-
mally define the No Extraneous Dependencies (NED) property:

A primitive BDN has the NED property if all output FIFOs
have been enqueued at leastn−1 times, and for each outputOi ,
all the FIFOs for the inputs in CombinationallyConnected(Oi )

are enqueued n times, and all other input FIFOs are enqueued
at leastn−1 times, thenOi FIFOmust eventually be enqueued
n times.

To express this property, we represent it as the conjunction
of multiple LTL [21] properties, each of which enforces that a
particular output o may have no extraneous dependencies. Here,
n − 1 from the above description corresponds with the minimum
number of tokens enqueued by any output channel of the LI-BDN;
therefore, the property expresses an obligation for o to produce
an output when at least n tokens have arrived at all the inputs to
which o is combinationally connected, at least n − 1 tokens have
arrived at all other inputs, and no more than n− 1 tokens have been
produced by o. This constraint on o may then be expressed as an
LTL property.

NED LTL property for output o

CCj (i) := output oj depends combinationally on input i
obligatedj := min

{i ∈I :CCj (i)}
enq_cnti > min

{o∈O }
enq_cnto∧

min
{i ∈I }

enq_cnti ≥ min
{o∈O }

enq_cnto∧
enq_cntoj = min

{o∈O }
enq_cnto

NEDj := G
(
obligatedj ⇒ F

(
out_readyj R out_validj

))
5.2.3 Self-Cleaning. Vijayaraghavan et al. [25] define SC:

A primitive BDN has the SC property, if when all the outputs
are enqueued n times, all the input FIFOs must [eventually]2
be dequeued n times, assuming an infinite source for each
input.

As with PI and NED, the SC property can be expressed as a
conjunction of LTL properties, each specifying when an input i is
obligated to eventually dequeue a token. A common term in all of
the properties is the minimum number of enqueued tokens by any
output port; this value corresponds with n in the English-language
description of the property. As part of the LTL property for input
channel i , we add a signal obligatedi indicating that the simulation
LI-BDN has dequeued fewer than n tokens from that channel.

2Clarified in [24].

SC LTL property for input i

obligatedi ⇔ input channel i has a dequeue obligation
obligatedi := deq_cnti < min

{o∈O }
enq_cnto

SCi : G
(
obligatedi ⇒ F

(
in_validi R in_readyi

) )
6 CASE STUDY: MULTI-PORTED MEMORIES

ASIC multi-ported RAMs are a classic culprit of poor resource
utilization in FPGA prototypes, as they cannot be trivially imple-
mented in BRAM and are instead decomposed into LUTs and reg-
isters [27]. While using double-pumping, BRAM duplication, or
FPGA-optimized microarchitectures [17] can help, Golden Gate
can automatically substitute a decoupled model to further reduce
resource utilization. This enables a target memory with M asyn-
chronous read ports and N write ports to be implemented by time-
multiplexing FPGA-friendly BRAMs.

6.1 Our Target ASIC

To motivate the need for this optimization, we use Golden Gate
to replace the register files in the application processor cores of
several multi-core SoC instances produced by the Rocket Chip
Generator [2]. This generator can emit a broad space of systems
based on the RISC-V ISA, each consisting of multiple cores, coherent
cache hierarchies, peripherals, and outer memory system interfaces.
Here, we study two different “core complexes”—consisting of the
cores and inner caches—each based on a different RISC-V core
implementation: Rocket [2], an in-order scalar core, and BOOM [6],
a unified physical register file, superscalar out-of-order core. In each
case, we evaluate the impact of substituting each core’s floating
point (FP) and integer register files for an optimized memory model.
Since these cores can be generated with a space of different register
files configurations, we describe register file parameters for the
instances we study in Table 1.

Type Size Read Write BMC
Ports Ports Runtime

Rocket integer 31 × 64b 2 comb. 1 445 s
Rocket FP 32 × 64b 3 comb. 2 334 s

BOOM integer 100 × 64b 6 comb. 3 637 s
BOOM FP 64 × 64b 3 comb. 2 372 s

Table 1: Register file specifications for the two target cores.

6.2 Model Microarchitecture

The optimized memory model is structured around a dual-port,
synchronous read memory that stores the contents of the simulated
memory, which, unlike the FPGA-hostile memory it models, can
be implemented in BRAM. Access to this memory is mediated
by an arbiter that selects a maximum of two target read/write
requests per host clock cycle; this arbitration is dynamic, based
upon when the tokens associated with individual ports arrive on
their associated decoupled interfaces. As shown in Figure 6, an FSM
is associated with each target port; together, this vector of FSMs
tracks the model’s progress in consuming input tokens, performing
BRAM accesses, and producing output tokens.
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with N corresponding to core count. FireSimMisc accounts for all resources in the Amazon-provided shell (v1.4.0) and FireSim

hardware for co-simulation; this is fixed across all designs.We omit DSP48s and URAMs as they are constant across all designs

and lightly used. Baseline penta- and hexa-core BOOM designs failed in placement due to over-utilization– we report post-

synthesis utilization. Optimized versions of the same designs use 26% fewer logic LUTs, and successfully place and route.

6.3 Verifying the Model With LIME

The lime flow can be applied to any Golden Gate simulation
model, but it is especially useful for the widely applicable memory
optimization. While each instance of the model is the output of
a parameterized generator, checking a large subspace of the opti-
mized models using lime provides a high degree of confidence in
the correctness of the transformation. In multi-core SoC, checks are
also amortized across multiple identically parameterized memories.

From a usability perspective, lime is an extremely convenient
tool to find bugs in optimized simulation models of highly ported
memories. Implementation bugs may appear only in specific corner
cases, such as a certain interleaving of I/O token arrivals interacting
pathologically with the write collision semantics of the memory.
In contrast with labor-intensive, model-specific directed random
testing, lime offers a push-button bounded model check that finds
all bugs that can manifest within the time horizon of the bound.
While a 20-cycle BMC bound has sufficient depth to cover the full
space of I/O token arrival interleavings over several target cycles,
Table 1 shows that this bound results in quick runtimes; longer BMC
checks can be amortized over many uses of common configurations.
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Figure 6: A microarchitectural sketch of a three-read, two-

write, optimized Golden Gatememory model.

R4 R16 B4 B5 B6
Baseline 135 MHz 60 MHz 90 MHz N/A N/A
Optimized 135 MHz 60 MHz 80 MHz 60 MHz 50 MHz
Table 2: fF PGA for successfully implemented simulators.

6.4 Adding the Optimization To Golden Gate

To enable our optimization in Golden Gate, we added an analysis
pass that finds annotated RAMs and a model-implementation pass
that inspects the parameters of the target RAM (ports, width, and
depth) and invokes our model generator (Section 6.2). We also an-
notated the register file RAMs in the target RTL. With these passes
enabled, Golden Gate detects and promotes a pair of candidate
RAMs for each core of the SoC during target transformation. In
simulator synthesis, the implementation pass consumes the RAM
modules and produces equivalent models. At this point, the rest
of the flow proceeds as described in Section 4.2). Enabling mem-
ory substitution adds 5 and 69 seconds of FIRRTL compile time to
the quad-core Rocket and hexa-core BOOM configurations, respec-
tively the smallest and largest designs we studied. This is negligible
relative to their FPGA compile times of 6 and 22 hours.

6.5 Results

The results of applying the multi-ported memory optimization
are shown in Figure 5. Optimized BOOM designs use 26% fewer
LUTs than baseline designs, allowing up to six BOOM cores (the B5
and B6 configurations) to be simulated with a single VU9P FPGA,
a significant increase over the baseline maximum of four cores.
The sixteen-core, Rocket-based design also saw an appreciable
7.8% reduction in LUT utilization over the baseline, despite having
lesser-ported, shallower regfiles. We report FPGA frequencies for
all designs that closed timing in Table 2.

As discussed in Section 2.3, replacing components of the target
with decoupled models will impact the FMR, therefore lowering sim-
ulation throughput. FireSim, being a decoupled simulator, generally
has FMR greater than unity. In particular, FireSim uses a last-level-
cache and DRAM model [4] (utilization included in FireSim Misc.
of Figure 5) to implement deterministic simulation of the target’s
outer memory system using host FPGA DRAM. When booting
a Buildroot Linux distribution, adding multi-cycle RAM models
increases FMR from 1.9 and 1.8 to approximately 6.9 and 9.3 for
Rocket and BOOM designs, respectively. FMR is a function of the



highest port-count model in each target, but is nearly constant
across core count, since the models are not combinationally cou-
pled and therefore execute concurrently. Finally, we note that the
performance penalty of using multi-cycle models may often be less
than that of partitioning—while using only one FPGA.

7 FUTUREWORK

Golden Gate is the first step toward a general optimizing compiler
for FPGA-accelerated simulators. Future research aims include:

(1) Other Resource Optimizations.CAMs are another FPGA-hostile
structure [27] that can be replaced with multi-cycle models.
We suspect large improvements lie in multi-threading [19,
23], where multiple instances of a module are multiplexed
over a single physical instance.

(2) Exploring Resource-Performance Tradeoffs. Users may wish to
use more hardware resources if doing so would improve sim-
ulation performance. Future versions ofGolden Gate could
strike different Pareto-optimal points along the resource-
performance curve and automate selection of optimizations.

(3) Proving Model Correctness. We plan to extend lime to use
k-induction for unbounded checks of LI-BDN properties.

8 CONCLUSION

In this paper, we present Golden Gate, an open-source compiler
that automatically decomposes ASIC RTL into a graph of commu-
nicating, latency-insensitive simulation models. Golden Gate can
identify costly structures, pull them into separate models, and re-
place them with much smaller, multi-cycle implementations. Using
lime, multi-cycle models can be shown to simulate the RTL timing
of their ASIC source and to avoid deadlock when composed with
the rest of the simulator. Finally, to demonstrate the applicability of
this approach, we develop a multi-ported RAM optimization and ap-
ply it to a multi-core SoC, enabling the use of a single FPGA where
a partitioned prototype would otherwise have been necessary.
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