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Abstract—Enabled by modern languages and retargetable compilers,
software development is in a virtual “Cambrian explosion” driven by a
critical mass of powerfully parameterized libraries; but hardware devel-
opment practices lag far behind. We hypothesize that existing hardware
construction languages (HCLs) and novel hardware compiler frameworks
(HCFs) can put hardware development on a similar evolutionary path
by enabling new hardware libraries to be independent of underlying
process technologies including FPGA mappings. We support this claim
by (1) evaluating the degree with which Chisel, an existing HCL,
can support powerfully parameterized libraries, and (2) introducing
the concept and implementation of an HCF that uses an open-source
hardware intermediate representation, FIRRTL (Flexible Intermediate
Representation for RTL), to transform target-independent RTL into
technology-specific RTL. Finally, we evaluate many hardware compiler
transformations, including simplifying transformations, analyses, opti-
mizations, instrumentations, and specializations, which demonstrate the
power of a combined HCL and HCF approach.

Index Terms—RTL; Design; FPGA; ASIC; Hardware; Modeling;
Reusability; Hardware Design Language; Hardware Construction Lan-
guage; Intermediate Representation; Compiler; Transformations; Chisel;
FIRRTL;

I. INTRODUCTION

The end of Dennard scaling and slowing technology advances
have eliminated the associated “free” power, performance, and area
improvements for digital circuits. Since specialized hardware imple-
mentations have enormous energy and performance improvements
over software on a general-purpose processor, specialization is likely
the future of hardware design [1][2][3]. This trend will manifest
in an increased demand for diverse products containing different
specialized RTL. Meeting this demand with existing methodologies
has proven difficult [4].

In contrast, the software industry has much faster design cycles
than the hardware industry; a small team can go from idea to
profitable software in under two weeks. What can the hardware
industry learn from the software community?

A key contributor to the software industry’s productivity is reusable
libraries, which amortize development and verification costs of new
applications. These libraries are built upon expressive languages with
retargetable compilers that perform platform-specific optimizations
on general-purpose code.

In comparison, hardware reuse is relatively rare; no widespread
reusable hardware library exists. However, if hardware projects reused
more code, engineers might spend less time designing and, more
importantly, less time verifying the new design. Since the benefits of
reusing code are clear, why don’t hardware engineers write reusable
libraries? The main contributions of this paper are as follows:

o Two hypotheses accounting for the stagnation of hardware
library development: We assert that (1) existing hardware de-
scription languages lack the expressivity to support hardware
libraries, and (2) diverse underlying implementations require
RTL customization, limiting reusability.

o A re-emphasis and analysis on hardware construction lan-
guages (HCLs) as primary tools for hardware libraries: Pre-
viously, many influential works have introduced and expanded
upon the concept of a hardware construction language. This

paper revisits them in the sole context of providing a platform
for which to develop hardware libraries.

o An open-source implementation of a hardware compiler frame-
work (HCF) to isolate RTL from implementation constraints: As
software retargetable compilers transform general-purpose code
into platform-specific assembly, HCFs transform general RTL
into target-specific RTL. By formalizing these transformations
into a compiler framework, we can enable robust and reusable
RTL transformations.

o An evaluation of many transformations that demonstrates
the wide-ranging applicability of our framework: Our HCF
implementation employs a hardware intermediate representation,
FIRRTL (Flexible Intermediate Representation for RTL), as the
basis for many different transformations including simplifying
transformations, analyses, optimizations, instrumentations, and
specializations.

II. TWO HYPOTHESES

Software libraries are pervasive in software development because,
through code reuse, they reduce development and verification costs of
new applications. Modern software relies on thousands of libraries—
Ubuntu 14.04 has approximately 35,000 packages installed natively.

In direct comparison, hardware designers do not commonly reuse
modules from project to project, let alone develop extensive and
reusable libraries.

Other attempts to reuse hardware has had mixed success. Increased
reuse of large complex custom IP blocks at the SoC-level has had
many benefits including faster time to market and reduced verification
effort. However, custom IP blocks are usually very specialized, as
opposed to being basic building blocks of hardware like queues,
arithmetic units, multipliers, caches, and so on, and pose more
integration challenges than a typical reusable library. To reiterate:
why don’t hardware engineers write reusable libraries?

A. Incorrect Hypotheses

One could claim the lack of hardware libraries comes from a lack
of effort; yet in the authors’ experience, many companies try, but fail,
to establish internal reusable libraries of hardware components.

One could also claim the lack of hardware libraries comes from a
lack of an open-source community; yet, popular open-source software
is often written by one or two contributors. D3[5], the popular
JavaScript visualization library, was primarily written by a single
engineer, but has still seen widespread use.

B. Hypothesis 1—Existing HDLs lack expressivity

Programming languages have seen significant improvements since
the 1980s when the majority of popular hardware description lan-
guages (HDLs) were designed (Verilog, VHDL). Modern advance-
ments in mainstream programming languages have made languages
like Java, C++, Python, Perl, and Ruby very powerful. Object-
orientation, polymorphism, and higher-order functions enable the use
of good software engineering principles like abstraction, separation
of concerns, and modularity; these ultimately encourage and enable
code reuse. HDLs have been very slow to adopt these paradigms.



An adder reduction tree illustrates this problem: Verilog and VHDL
cannot express recursive generate statements, so a designer must
manually unroll the loop and calculate indices for every instance.
The lack of parameterization precludes re-use when a tree of different
width is required.

Another example is a module that filters packets. Either the filter
module or an external module must encode the filter condition. The
first approach violates the principle of separation of concerns, while
the second violates encapsulation. However, higher-order functions
provide an elegant software engineering solution to the problem.

SystemVerilog, created in 2002, attempts to improve on existing
HDLs by mixing in modern ideas like object-oriented programming
with classic Verilog elements. The result is an extremely complicated
language—intractable to support and confusing to learn—that is
still missing other modern features like higher-order functions. To
the authors’ knowledge, no commercial SystemVerilog compiler
implements the entire specification [6].

High-level synthesis (HLS) takes a different approach by having
the user design in a higher level language, with a compiler translating
down to RTL. The input language can be C-like [7][8][9][10][11],
a parallel C-like language [12][13][14], general purpose [15], or
domain specific [16][17][18][19][20][21]. Many HLS tools are eval-
vated on simplicity of use, performance relative to a hand-coded
implementation, succinctness, and resource footprint; their ability to
foster reusable hardware libraries is not usually considered.

Unfortunately, HLS approaches suffer from two competing con-
cerns: (1) expressive source languages enable better software engi-
neering (and more reuse); (2) expressive source languages are more
difficult to translate to hardware and create more compilation/abstrac-
tion layers that hinder users who fine-tune a design.

C. Hypothesis 2—Underlying complexity requires RTL customization

In spite of the success of logic synthesis, many underlying con-
straints still influence RTL design.

ASIC implementations often require RTL customizations. For
example, Verilog lacks an explicit memory construct; users must use
a register array. In modern technologies, SRAMs are provided by
the fabrication company because large memories often contribute to
a design’s critical path. RTL designers must rewrite their design to
replace these register arrays with black-boxed SRAMs; this elimi-
nates any future reuse that does not use this ASIC technology or
performance envelope.
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Fig. 1: Underlying constraints for ASIC versus FPGA implementations means
the same RTL cannot get good results on both platforms. This limits the
reusability of any RTL design. To solve this problem, programmatic RTL
transformations must take generic RTL and specialize it for a given platform.

FPGA implementations are no different; many FPGAs have hard-
ened logic blocks to improve design quality. A designer can receive
significant performance, power, or utilization advantages by mod-
ifying their RTL to be friendlier to a particular FPGA’s synthesis
tool. These changes, however, may be detrimental to an ASIC
implementation or another FPGA implementation.

To solve this problem, some designers write a collection of custom
scripts to do ad-hoc programmatic RTL modifications; these scripts
are neither reusable, robust, nor composable.

Commercial CAD tools do not completely solve this problem
either. While some contain RTL-to-RTL transformations, CAD tools
primarily focus on synthesis and place-and-route. They are also not
organized in an open-source compiler framework and are insufficient
for custom flows that may have unsupported use cases.

One exception is Yosys[22], an open-source framework for Verilog
RTL synthesis which maps Verilog to ASIC standard cell libraries
or Xilinx FPGAs. Yosys’s main focus is logic synthesis, not RTL
to RTL transformations. As such, its internal design representation
is very low level and cannot represent higher-level constructs like
aggregate types, width inference, and conditional assignment.

Separate from CAD tools, there exist stand-alone RTL modifiers,
but many are closed source[23] and, like commercial CAD tools,
do not easily support custom flows. An exception is PyVerilog[24],
which is an RTL-to-RTL modifier tailored specifically to Verilog.
As such, it makes it difficult to act upon designer intent that is
not directly represented in a Verilog construct. PyVerilog does not
support SRAM inference or aggregate types, and these features would
be very difficult to support given its internal circuit representation.
Another exception is Verific[25], a commercial tool that parses
Verilog/VHDL designs and enables users to write transformations
based on either the source AST or a language-independent netlist
format. Because Verific supports every detail of these languages, a
custom transformation must either support all language details (which
can increase transformation complexity), or operate on the netlist
format (which lacks designer intent).

ITII. HARDWARE CONSTRUCTION LANGUAGES, HARDWARE
COMPILER FRAMEWORKS, AND TRANSFORMATIONS

We assert that expressive languages and programmatic customiza-
tions enable reusable libraries. This section emphasizes how hardware
construction languages (HCLs) enable expressive hardware designs
and how hardware compiler frameworks (HCFs) enable programmatic
customizations. We then introduce our open-source HCF implemen-
tation and its intermediate representation (IR) and show example
transformations to demonstrate its wide applicability.

A. Hardware Construction Languages for Hardware Libraries

Hardware construction languages (HCLs) embed HDL-like hard-
ware primitives in an existing programming language. Because an
HCL directly uses RTL abstractions, there are no performance/area
overheads for using an HCL over any HDL. HCL designers use the
general-purpose language’s rich control structures and abstractions
to create modular, parameterizable, reusable, and performant designs
compared to a equivalent HDL design [26][27][28][29][30][31][32].

Chisel[33] is an open source! HCL that is hosted in Scala[34], a
modern object-oriented and functional language.

1) HCL structure: All HCLs are software libraries with interfaces
for constructing synthesizable RTL. To illustrate, the following toy
example HCL has classes representing registers or muxes:

// Represents synthesizable piece of hardware
abstract class HW {
// Emits corresponding HDL representation
def emit: String
}
class Register (name:
extends HW {
def connect (r: HW) = ...
def emit = s"reg [${width-1}:0] Sname;"
}
class Mux (cond: HW,
extends HW {...}

String, width: Int)

ifTrue: HW, ifFalse: HW)

! Available: https://chisel.eecs.berkeley.edu/



A designer can then create a register and hook it up by instantiating
the Register object and calling its connect method:

class Top { ... // Start of program
val my_reg = new Register ("my_reg", 32)
my_reg.connect (my_mux)

}

Language features like operator overloading can also cut verbosity:

class Top { . // Start of program
// Equivalent to my_reg.connect (my_mux)
my_reg := my_mux

}

By executing this HCL code, one generates the complete design;
this process is called elaboration. Each HCL method call builds an
underlying data structure representing the hardware design instance.
This design can then be emitted to an existing HDL. Developing in
a well-designed HCL can closely mimic the experience of writing in
an HDL.

2) Enabling Hardware Libraries: HCLs by themselves do not
provide any new hardware abstractions. However, host language
features allow designs to be more parameterizable and modular.

For example, Chisel users can write a recursive Scala function
to construct an adder-reduction tree, parameterized on bit-width.
Unlike the explicitly unrolled version necessary in Verilog, the same
generator could be re-used anywhere an adder tree is desired.

Similarly, a Chisel designer can write a filter module which takes,
as a parameter, a higher-order-function that creates the condition-
checking hardware. The user of this module then only needs to write
the filtering condition, re-using the base filter structure.

Ultimately, an HCL’s host language expressiveness is what
enables reusable hardware library development.

B. A Hardware Compiler Framework

As software compilers transform general-purpose code into spe-
cialized assembly, a hardware compiler transforms general RTL into
specialized RTL. By collecting these transformations into a compiler
framework, we can enable robust and reusable RTL transformations.

The central part of any compiler is its intermediate representation
(IR), upon which all transformations operate. This section gives an
overview of our hardware compiler framework and the design of its
open—source2 IR, FIRRTL.

1) HCF Structure: Modern software compiler frameworks like
LLVM]|35] consist of (1) frontends, (2) transformations, and (3)
backends. A frontend parses programs written in a specific program-
ming language (e.g. C++ or Rust) into a compiler-specific IR. IR-
to-IR transformations such as optimization passes then can operate
on and modify the program’s structure. Finally, a backend converts
the IR into a program in the target ISA, e.g. ARM or x86. This
structure of translating an input language into an IR enables reusing
transformations among multiple designs and languages.

Our HCF is similarly structured: Chisel and Verilog frontends
translate designs into FIRRTL, transformation passes provide simpli-
fication, optimization, and instrumentation, and the resulting FIRRTL
can either be simulated directly or passed to one of many Verilog
backends tailored for simulators, FPGAs, or ASIC technology pro-
cesses.

2) FIRRTL Design Justification: Designing an IR is an important
part of any compiler, and we evaluate IRs on these three desirable,
yet sometimes competing, qualities:

2 Available: https://github.com/freechipsproject/firrtl
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Fig. 2: LLVM can create a C++-to-x86 compiler or a Rust-to-ARM compiler,
yet share internal transformations on LLVM-IR. Similarly, our HCF can create
a Chisel-to-ASIC-Verilog compiler or Verilog-to-FPGA-Verilog compiler and
share internal transformations.
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e clear: semantically straightforward

o simple: small set of IR nodes

e rich: captures user-intent

All tools that manipulate RTL- or gate-level designs have an IR
that they operate on, whether rigorously defined or not. Each tool’s IR
makes differing tradeoffs depending on their use: an IR for operating
only on behavioral Verilog-2005 should be more rich but less clear
and simple than an IR operating solely on netlists.

Our hardware IR, FIRRTL (Flexible Intermediate Representation
for RTL), represents RTL digital circuits and is designed to specialize
source RTL code from underlying implementations[36]. As such,
FIRRTL first prioritizes richness to capture as much source RTL user
intent as possible. For example, FIRRTL contains explicit memory
nodes, aggregate types, a clock type, and typesafe connections to
enable other languages, like Chisel, to map to these constructs and
to capture the user’s intent.

Since our HCF must eventually emit a less-rich representation for
downstream simulators and tools, FIRRTL is also simple. Finally,
FIRRTL is clear because it is rigorously defined and has straightfor-
ward width inference and type inference rules.

3) FIRRTL Overview: FIRRTL defines hardware modules for en-
capsulation, registers and memories for state elements, and primitive
operations and muxes for combinational logic.

To bridge the gap between capturing user intent and downstream
formats, FIRRTL consists of three well-defined forms (high form,
middle form, low form) where each uses a smaller, stricter and simpler
subset of FIRRTL features than the previous form. FIRRTL’s low
form contains the set of low-level features that map directly to Verilog
constructs with straightforward semantics on a variety of targets.

Any transformation can specify which FIRRTL form it consumes,
but can always emit a higher form that is subsequently lowered. Less-
rich inputs have fewer corner cases, and transformations that modi-
fy/generate FIRRTL are simplified with access to rich IR features.

4) In-Memory FIRRTL Representation: The in-memory structure
of a FIRRTL design significantly influences how easily transforma-
tions are written. As is commonly done in software compilers, a
FIRRTL design is internally represented with an abstract syntax tree
(AST) structure, where transformations recursively walk nested ele-
ments to manipulate the AST. If non-local information is necessary,
transformations first walk the tree to build a custom data structure,
then walk the tree a second time to manipulate the AST.

Some transformations may require other representations of the de-
sign. Combinational loop detection, for example, operates on a netlist-
like directed graph. Our compiler framework has an accompanying
library, which transformations can use to build these data structures.

The FIRRTL AST consists of IR nodes represented by an in-
memory object, each of which is a subclass of one of the following



IR abstract classes: circuit, module, port, statement, expression, type.
Each IR node can have children objects of other IR node classes, the
relationship of which is shown in Figure 3. Figure 4 demonstrates
how a FIRRTL circuit is represented in-memory as an AST of IR
nodes.
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Fig. 3: A FIRRTL circuit is represented using these AST nodes. Each can
have one or many different children nodes of various types. For example, a
FIRRTL statement can have children statements, expressions, and/or a type.

circuit Delay:
module Delay:
input clk: Clock
input in: UInt<4>
output out: UInt<4>
reg r: UInt<4>, clk
r <= in

out <= r

[ input clk ] [ input in ] [wtpnt wt]

I UInt<4>

] reg r <= <=
EEEED

Fig. 4: An example FIRRTL circuit in its AST versus textual representation.
This circuit contains a single module that outputs the input signal delayed
by one cycle. The (...) statement is a block statement that only contains
multiple children statements - this node makes it easy to replace a single
statement with multiple statements in a single walk of the AST.
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The following recursive algorithm visits all expression nodes in a
circuit: First, visit each module’s statement nodes. For each visited
statement, visit each of its children statement and expression nodes.
For each visited expression, visit each of its children expression
nodes.

All transformations use these recursive walks of the FIRRTL AST
to modify the circuit.

C. FIRRTL Transformations

Transformations always consume and produce a well-defined AST
circuit and easily connect one-after-another. Constraints on the design
can be checked after each transformation. This structure makes
inserting new transformations straightforward and safe, unlike the
use of brittle, ad-hoc scripts.

1) Example Transformation: To express a recursive walk, every IR
node has implemented a custom map function; a node’s map applies
a user-specified function to the subset of children whose node-type
matches the function’s input and return node-type.

The following example demonstrates calling a module’s map with
a function that accepts and returns a port, and with a function that
returns a statement.

def onP(p: Port): Port = ...
def onS(s: Statement): Statement = ...
val myMod = Module(..., Seqg(portl, port2), stmt)

val ml = myMod.map (onP)
// ml is Module (..., Seqg(onP (portl),
val m2 = myMod.map (onS)

// m2 is Module (..., Seqg(portl,

onP (port2)), stmt)

port2), onS(stmt))

While simple, using map to recursively walk the FIRRTL AST is
extremely powerful.

The following example is an optimization transformation that does
constant propagation over muxes with constant predicates. We walk
all FIRRTL modules, statements, and expressions recursively by
calling map on modules, statements, and expressions. For any mux
we see, we check our constant propagation condition and, if true,
perform the optimization. Note that this code visits expressions in
postorder traversal, requiring only one pass through the AST.

class SimpleConstProp extends Transform {

def inputForm = HighForm

def outputForm = HighForm

def execute(state: CircuitState): CircuitState = {
state.copy (circuit = state.circuit.map (walkMod))

}

def walkMod (m: DefModule) :
m.map (walkStmt)

}

def walkStmt (s: Statement): Statement = {
s.map (walkStmt) .map (walkExp)

}

DefModule = {

def walkExp (e: Expression): Expression = {
e.map (walkExp) match {
case Mux (UIntLiteral(x,_),t,f,_) if x == 1 => t
case Mux (UIntLiteral(x,_),t,f,_) if x == 0 => f

case other => other
}
}
}

2) Simplification Transformations: Simplification transformations
take a FIRRTL circuit and simplify it to a lower form. There are two
simplification transformations: (1) high-to-mid, which takes in high
form and emits middle form; (2) mid-to-low, which takes in middle
form and emits low form.

For example, one task of the high-to-mid transformation is to
remove FIRRTL'’s bulk-connect operator. This operator allows com-
ponents with aggregate types to be connected in a type-safe manner
with a single statement, capturing user intent. However, lower forms
only support connections between primitive types, so the high-to-
mid transform rewrites the bulk-connect into a series of individual
connections.

3) Analysis Transformations: Designers often desire insight into
the compiler to understand the degree of optimizations taking place.
Node-counting, early area estimations, and module hierarchy depic-
tions are three useful analysis transformations early in the design
cycle.

4) Optimization Transformations: The three major optimization
transformations implemented are constant propagation, common
subexpression elimination, and dead code elimination. Because down-
stream tools do aggressive logic analysis and other optimizations,
these transformations have little effect on the gate-level design, but
are critical for code readability.

5) Instrumentation Transformations: Our HCF’s modular structure
makes it straightforward to add simple instrumentation passes. These
can include inserting hardware counters, hardware assertions, or even
improving simulation line coverage detection.

6) Specialization Transformations: Different backend targets, es-
pecially FPGAs and ASIC process nodes, require RTL modifications
to achieve good results.

To solve Verilog’s memory problem described in Section II-C,
Chisel has a high-level memory construct that directly emits a
FIRRTL memory. Our memory transformations either emit a register
array or a technology-specific SRAM macro. For FPGAs, we can
emit stylized Verilog to ensure the BRAMs are correctly inferred, as
well as enable targeting hard macros by directly instantiating FPGA
templates. Other ASIC backend specializations include integration



with pad-frame libraries and fine-grained flattening, deduplicating,
and moving of modules for floorplanning.

IV. EVALUATION

This paper claims that HCLs and HCFs enable flexible hardware
libraries by promoting code reuse and isolating source code from
backend-specific optimizations/constraints. We demonstrate the fol-
lowing: (1) Chisel provides the necessary expressivity to support
a high degree of parameterization and reusability; (2) our HCF
implementation’s wide-ranging applicability to customize RTL for
many different use cases.

A. Chisel Support for Hardware Libraries

An expressive language requires fewer lines of code to more fully
parameterize a design. This parameterization enables reusing the
same code in different contexts with different parameters, potentially
generating radically different hardware.

The following evaluates Chisel with regards to its expressiveness,
parameterizability, and ultimately its reusability.

1) Expressiveness: Using software engineering methods enabled
by modern programming languages, we should expect fewer lines of
code to express similar projects.

RocketChip[37] is an open-source hardware library?, written in
Chisel, that can generate many different instantiations of a symmetric
multi-processor system (SMP). OpenPiton[38] is another open-source
manycore processor and framework? used for research, written pri-
marily in Verilog and enhanced with some Python-Verilog generation
scripts, that uses an Sun UltraSPARC T1 (OpenSPARC) core with a
custom interconnect and coherency framework.

OpenPiton and RocketChip have many similarities from 10,000
feet — both are SOC generators, containing cores, caches, network
protocols, coherency domains, tests, and much more. Both are used
for computer architecture research, have been realized in silicon,
and boot Linux. OpenPiton’s core is a simple in-order design with
multi-threaded capability, while RocketChip cores are either in-order
(Rocket) or out-of-order (BOOM) but neither have multi-threaded
capabilities. As shown in Table I, RocketChip cores have Coremark
scores ranging from 2.42 to 4.49, while OpenSPARC has a Coremark
score of 1.32[39]. For comparison, a similarly-sized industrial out-
of-order core, the Cortex-A9, has a CoreMark score of 3.71[39].
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Fig. 5: Similar hardware structures show significant differences in code size,
ranging from between 3x to 10x. Because of their differing feature sets, this
evaluation should not be taken as a strict comparison; rather we interpret this
as a general trend that using Chisel enables a more expressive coding style.

While clearly an apples-to-oranges comparison, Figure 5 depicts
a comparison between the code bases. OpenPiton takes between
3x and 10x more code to express similar hardware structures; the
sheer magnitude of code size differences between OpenPiton and
RocketChip cannot be explained solely by their differing feature sets.

3 Available: https://github.com/freechipsproject/rocket-chip
4Available: http://parallel.princeton.edu/openpiton/

Name MicroArch Coremark (per MHz)  Area (mm?2)
Rocket In-Order 2.42 1.62
BOOM  Out-of-Order 4.49 4.99

TABLE I: We pushed two different configurations through our compiler
framework and synthesized them with the Synopsis SAED educational stan-
dard cell library[41]. The in-order core is a five-stage pipelined processor,
while the out-of-order core is a 2-wide fetch, 3-issue integer pipeline, and
2-issue floating-point pipeline with a GShare branch predictor.

In addition, to the authors’ knowledge, RocketChip’s out-of-order
core, BOOM[40], requires the fewest lines of code of any open-
source out-of-order core implementation.

While we expect much of the OpenSPARC core was not entirely
hand-written (tools like editor extensions could have been used) we
feel the comparison of language expressivity remains valid: Chisel is
clearly more expressive than Verilog as is shown by the significant
reduction in code size for RocketChip.

2) Parameterizability: ~ Parameterization precedes effective
reusability - a flexibly parameterized module is more useful, and
thus more reusable.

While it is difficult to quantitatively evaluate the flexibility,
magnitude, and degree of parameterization that a general purpose
programming language provides an HCL, we describe qualitatively
the type and degree of RocketChip’s parameterizability:

¢ Out-of-order parameters: fetch width (1, 2, 4), issue width (1,
2, 3, 4), branch predictors (BTB, GShare, TAGE)

« Data parallelism: number of parallel data operations (4 through
32), precision (half, word, double)

o Multi-core: number of cores (1, 2, 4, 8, 16)

o Cache: size (64KB to 2MB), associativity (direct-mapped, two-
way), type (scratchpad, blocking, non-blocking), coherence pol-
icy (MSI, MESI)

Note that the cross product of these parameters are all valid, and
many (but not all) of these design points have been experimented
with or even realized in silicon.

Furthermore, many of these parameters are not simply bit-widths,
but impact the control logic, interface definitions, and communication
protocols. In Table I, two different parameterizations of our cores re-
sult in vastly different designs with very different microarchitectures,
performance results, and area numbers.

3) Reusability: We analyzed three processors written in Chisel: (1)
BOOM][40], RocketChip’s out-of-order machine, (2) Rocket, a single-
issue in-order core, and (3) DecVec, a decoupled vector co-processor,
to understand whether parameterized designs foster reusability. As
shown in Figure 6, approximately 5000 lines of code are shared with
all three designs, and even more is shared between pairs of designs.
In all, the three designs share half or more of their codebases with
one another.

B Rocket + BOOM + DecVec
M Rocket + BOOM
Rocket + DecVec

Rocket
BOOM
DecVec Unique

0 5000 10000 15000

Lines of Code
Fig. 6: Three processors Rocket, BOOM and DecVec reuse each other’s code.
Modules used by all three designs include an ALU, a MulDiv unit, an ICache,

a TLB, a Decoder, and an FPU. Modules used by Rocket and BOOM include
a non-blocking data cache, a PTW, a CSR, and a BTB.

B. HCF Support for Isolating Source from Backend

When backend-specific customizations are reflected in source code
changes, it limits code reusability. Our HCF is designed to enable



many different categories of customizations that transform a design.

First we evaluate the richness of our IR, FIRRTL, and then
show it can support a similar degree of optimizations that CAD
tools can employ. Then, we demonstrate and evaluate a number of
instrumentation and specialization transforms to illustrate the wide-
ranging applicability of our framework.

1) FIRRTL Evaluation: What separates FIRRTL from the IRs in
Yosys and PyVerilog is its ability to capture user intent. Recursive
aggregate types (vectors and bundles) enable grouping related signals.
Conditional connection statements enable straightforward floating
signal checks. Bulk connections enable typesafe assignments. Finally,
its explicit memory node allows straightforward and powerful mem-
ory optimizations. All these FIRRTL features should enable concise
expressions that would require a less-rich IR to use more lines of
code to represent.

To demonstrate the utility of a rich IR, we analyze the following
three designs: (1) a reorder-buffer, (2) a branch reorder-buffer, and
(3) a register renaming free list. As the design’s rich features are
simplified into FIRRTL’s middle and low forms, we record the lines
of code required to represent the design. To ensure for our HCF does
not artificially inflate FIRRTL’s code size, we run our optimization
passes on the final stage of compilation.

As shown in Figure 7, some designs exhibit huge growths in
code size during simplification, in spite of FIRRTL optimizations;
this illustrates how a rich IR can concisely express a design, if the
designer or frontend chooses to use the rich features.
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Fig. 7: Code size normalized to size of representation in High FIRRTL.
The ROB and BranchROB both use aggregate types, bulk connections, and
memory nodes while the RenameFreeList is made primarily of logic and does
not use rich FIRRTL features.

2) Optimization Evaluation: A synthesis tool like Yosys does bit-
level analysis and can thus perform more aggressive optimizations
than FIRRTL can. However, as shown in Figure 8, our optimization
passes reduce the cell count by up to 71% compared to up to 76%
for Yosys. Running both FIRRTL’s and Yosys’s optimization passes
results in even further cell count reduction.

3) Instrumentation Evaluation: We implemented a FIRRTL line-
coverage transform which instruments the circuit to print its coverage
information as it is executed in simulation. This instrumentation was
necessary for Chisel because some of its constructs cannot map di-
rectly to Verilog, and so must first be simplified. This destroys source-
level information that Verilog line-coverage tools rely on, making
them largely ineffective. This transform works by associating high-
level source-line information with low-level execution statements.

Figure 9 shows the percentage of modules in an instance of
the RocketChip SoC colored by the percentage of those modules
source lines which are tested. We show the results for three different
configurations of the SoC; modules with low coverage exist in all
three, and there is no clear trend in coverage based on configuration.
In general, most modules have a high level of coverage on the
given test-suite with a few modules that are very lightly tested. This
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Fig. 8: FIRRTL optimization passes reduce cell count to a similar degree as

Yosys optimization passes.

transform enables designers to target low-coverage modules with new
tests and improve verification.
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Fig. 9: We show the results for three different configurations of the SoC,
a minimally sized configuration, ExampleSmallConfig, a moderately sized
configuration with a small L2 cache, Smalll.2Config, and the default sized
configuration with a 256KB L2 cache, DefaultL2Config. The majority of
modules have high coverage, but there remain a few which need targeted
testing.

4) Transformations for FPGA Simulation: When simulating on
an FPGA, there is little default visibility into a design. Commercial
tools like Chipscope[42] enable real-time analysis, but require a long
iteration cycle to select specific signals to target. In addition, it does
not provide visibility into the BRAM memories on the FPGA, so
cannot provide a full “snapshot” of the design at a given cycle.

We implemented an instrumentation transform which enables paus-
ing a design on the FPGA (decoupling host and target time), and
a transform that enables reading out a state snapshot of the target
design on the FGPA. These transforms involve threading an enable
signal to all registers, inserting buffers to record input and output
traces, inserting address generation hardware to read out memory
state, and attaching a custom daisy chain to scan out register and
BRAM state from the FPGA. These types of transforms are a key part
of many use cases, including fast and accurate power simulation[43]
and debugging a circuit (future work).

In addition to instrumentation, other optimizations aim to provide
the most effective use of resources when mapping a design to an
FPGA. In particular, BRAMs are a valuable resource that can easily
be wasted through replication to accommodate high port counts;
instead, one of the FPGA specialization passes can automatically
transform memories with high port counts into double-pumped mem-
ories with half as many ports by providing clock doubling and glue
logic. Although this may reduce the maximum clock rate, the high
speed potential of BRAM macros means that many microarchitectures
will suffer much less than the worse case halving of throughput.
In exchange for this trade off, the pass attains a 3x reduction in
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demands on FPGA resources, but do provide visibility into the design that was
previously unobtainable. Baseline and transformed designs run at 40MHz.

BRAM utilization for a streaming vector arithmetic block consuming
three operands and producing one result per cycle, as shown in Figure
11. This comes at a small 1.43% increase in logic slice utilization.
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Fig. 11: Automatic double-pumping saves FPGA resources by emulating
expensive, highly-ported memories. This approach maintains abstractions that
facilitate reuse.

5) Transformations for ASIC Fabrication: ASIC designs benefit
from the use of highly optimized hard-IP macros that are targeted
towards specific functions. For example, large memory-based designs
are typically mapped to vendor-provided SRAMs rather than regis-
ters, to improve QoR (in terms of area, power, and timing closure)
and tool runtime. As seen in Figure 12, after synthesis a 2048-point
memory-based FFT (20-bit real and imaginary) implemented with
SRAMs (4 banks of 512-depth memories) is 6x smaller than the
same FFT implemented with registers. The savings will increase after
place and route due to excess routing penalties incurred in the register
based design. Additionally, synthesizing the SRAM-based design
takes considerably less time than the register based design, because
the tools need to handle significantly fewer hardware instances.

However, specializing RTL to make use of these macros on a
per-technology basis is non-trivial. Vendor-provided SRAMs often
require properly connecting additional pins for initialization and
verification but do not contribute to the functionality at a high-level.
To address this issue, our memory-replacement transform replaces a
generic FIRRTL memory with a custom black-box that matches the
ports of the vendor-provided SRAM. Without running the transform,
FIRRTL translates the generic FIRRTL memory into a large register
array. When the transform is run, design-specific memory signals
(data, address, and enable) are connected to the ports of a vendor-
provided SRAM instance, and any additional initialization and veri-
fication signals to and from the SRAM are automatically connected,
across module boundaries, to top-level ports.

By default, generic FIRRTL memories are mapped to dual-ported
SRAMs. However, an additional optimization pass can be run to
substitute the memories with single-ported SRAMs. Before making
the substitution, this pass traverses the circuit to verify that read and
write enables are logically exclusive. This greatly reduces the design
effort required to map generic RTL to optimized hardware.

C. Case Study: Custom Design on a new ASIC Process

To illustrate a workflow using an HCL/HCF framework, we created
a custom parameterization of RocketChip, synthesized, and place-
and-routed on a 28nm process to DRC/LVS-clean GDS.
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Fig. 12: A hardware FFT Chisel design generated with and without the
memory-replacement transform was synthesized in a 16nm process. Our trans-
form improved utilized area by 6x. Designs met timing at 800ps (1.25GHz).
Synthesis took ~6 mins with SRAMs, versus to 1 hr 44 mins without.

The design consists of two cores with a large data-parallel cache-
coherent accelerator. The L2 cache is heavily banked, which requires
multiple SRAMs. In addition, there are multiple clock and voltage
domains, as well as multiple high speed off-chip IOs.

Because of the parameterization and reuse employed by the
RocketChip hardware library, it is very easy to specify the desired
design - only 1817 new lines of code were added, which consisted
of specialized configuration parameters, top-level glue logic, and an
associated test harness. Many modules had already been verified and
evaluated in previous projects, and thus needed less verification and
design effort. Almost all verification effort was spent on the new code
as a result, and this reusability was key to reducing design overhead.

Targeting the 28nm process reused the memory-transform and the
optimization transforms described in Section III-C. However, this
process presented two new problems: (1) our synthesis tools required
specitying clock and voltage domains per module; (2) the SRAMs
had extra initialization and control pins unique to this process.

Due to the modularity of our HCF implementation, we wrote two
custom passes to solve these problems and added them as part of
the HCF transform library for use with other designs, backends, and
projects, requiring only 680 new lines of code. Our toolchain (and
runtimes) included Chisel (12 min), FIRRTL (11 min), synthesis (3.8
hrs), and place-and-route (>40 hrs).

In total, 94% of this design was reused, and future work will
validate this methodology on other designs with other technologies.
V. CONCLUSION

Unlike the software industry, the hardware industry is inhibited by
the lack of code reuse via libraries. To enable hardware libraries,
this paper contributes the following: (1) a reemphasis on how HCLs
provide language expressivity to enable reusability, (2) how our hard-
ware compiler framework, based off a new hardware IR, FIRRTL,
supports RTL customization, and (3) the wide-ranging applications
of a hardware compiler framework.

Specialization is the future of hardware design, and increasing
reusability within our hardware design methodologies is critical to
meeting the incoming demand for chip diversity. Designers should
focus on developing reusable hardware libraries, while researchers
and developers should consider reusability as a primary focus of
future languages and compilers.
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