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Abstract—The end of Dennard scaling has led to an increase in demand
for energy-efficient custom hardware accelerators, but current hardware
design is slow and laborious, partly because each iteration of the compile-
run-debug cycle can take hours or even days with existing simulation and
emulation platforms. Cyclist is a new emulation platform designed specif-
ically to shorten the total compile-run-debug cycle. The Cyclist toolflow
converts a Chisel RTL design to a parallel dataflow graph, which is then
mapped to the Cyclist hardware architecture, consisting of a tiled array
of custom parallel emulation engines. Cyclist provides cycle-accurate/bit-
accurate RTL emulation at speeds approaching FPGA emulation, but
with compile time closer to software simulation. Cyclist provides full
visibility and debuggability of the hardware design, including moving
forwards and backwards in simulation time while searching for trigger
events. The snapshot facility used for debugging is also used to provide
a “pay-as-you-go” mapping strategy, which allows emulation to begin
execution with a low-effort placement, while higher-quality emulation
placements are optimized in the background and swapped in to a running
emulation. The Cyclist ASIC design requires 0.069mm2 per tile and
runs at 2GHz in a 45nm CMOS process. Our evaluation demonstrate
that Cyclist outperforms FPGA emulation, VCS, and C++ simulation on
combined compile and run time for up to a billion cycles for a set of
real-world hardware benchmarks.

Index Terms—Simulation; RTL; Design; FPGA; Hardware; Modeling;
Debugging

I. INTRODUCTION

The end of traditional Dennard scaling is driving demand for
efficient specialized hardware accelerators in all scales of computing
system from smartphones [1] to datacenters [2]. But designing
efficient digital hardware is incredibly labor intensive compared to
sequential software of similar functional complexity, as hardware
designers must not only verify highly concurrent implementations
but also optimize performance and energy consumption. The typical
design loop contains many steps that take considerable wall-clock
time with existing hardware design tools. Each iteration of the design
loop requires programming, compilation, testing, debugging, and
evaluation steps. To accelerate development, we need to decrease the
total time through the many required iterations of the design loop.

In general, reducing the latency of the steps of the loop where the
designer is not productively developing (compilation and emulation)
will speed the development process. To this end, hardware designers
typically use a variety of emulation techniques at different stages in
the design process, trading off cost, compilation speed, and emulation
throughput. Emulation techniques range from software emulation on
general-purpose servers to hardware emulation on specialized multi-
million dollar hardware emulation engines. We use the term “target”
to describe the design being emulated, and “host” to represent the
system emulating the target design as shown in Figure 2. Although
software-based emulations are sometimes called simulations, in this
paper we use the term emulation for any cycle-accurate and bit-
accurate model of a target, whether implemented in software or in
hardware.

Figure 1 shows the summed compile-and-run time curves for
software and FPGA-based emulation alternatives. Software-based
approaches, either using compiled C++ models or Verilog models
compiled by Synopsys VCS [3], have fast compile times but relatively
slow run times, and work well for fewer emulated cycles. FPGA-
based emulation has very slow compile times, due to the FPGA
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Fig. 1: Example “time-to-cycle-N” plot for an in-order single-issue processor
booting an simple OS, where “time-to-cycle-N” = compile-time + run-time.
Various emulation techniques are shown including GCC-compiled C++ code,
a Verilog simulator (VCS), and an FPGA system (Virtex-6). Lower times are
better. For the FPGA, initial high compilation times are eventually amortized
over many target cycles.

synthesis and place-and-route tools, but has very fast run times and
works better for situations involving many emulated cycles.

Early in development, designs often fail after a few target cycles
due to simple errors. After the simpler bugs are fixed, more subtle and
complex bugs tend to only manifest in tests running for much larger
numbers of target cycles. Hence, for early development, users prior-
itize emulators with good debugging capabilities, increased visibility
of internal state, and fast compilation times, and are less concerned
with emulation speed. Later in development, users must prioritize fast
emulation speed, and are forced to accept much longer compilation
times and less visibility. This makes it exceptionally tedious to find
and debug errors that occur only after a large number of cycles, as fast
emulation platforms typically require a time-consuming re-synthesis
to trace different sets of signals.

Designers try to select emulation strategies to be on the lowest
curve for the expected number of target execution cycles. Unfortu-
nately, there is considerable effort required to set up all the various
emulation solutions, and it is also difficult to predict how many
emulation cycles will be needed to reproduce a bug. Ideally, a
developer would use just one emulation solution and would incur
total turnaround time proportional to the number of emulation cycles
actually required, and would also be able to have full visibility into
the design even at high emulation speed.

This paper introduces Cyclist, a new hardware emulation system
that accelerates the design loop by providing fast emulation speed,
pay-as-you-go compilation time, and full interactive visibility into
the target design. Cyclist employs a parallel emulator architecture
consisting of a spatial array of specialized processing tiles, onto which
RTL designs are mapped using the Cyclist toolflow, as shown in
Figure 9.

Compared to a software emulation approach, Cyclist has slightly
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Fig. 2: Target circuit, emulator host machine, and target circuit being emulated.

longer compilation time, but much faster execution due to the large
number of parallel elements and network-on-chip specialized for fine-
grained synchronization common in RTL simulation.

Compared to an FPGA emulation approach, Cyclist increases
emulation capacity by representing the circuit graph using coarse-
grain instructions stored in the processing tile’s memory, rather than
as a logic circuit mapped to programmable logic blocks. Compilation
time is also much reduced as only a coarse-grain dataflow graph of
RTL operators needs to be placed and scheduled, rather than placing
and routing a gate-level circuit netlist. By using simple pipelined
processors, host clock rate can be much greater than for placed FPGA
design, which helps improve efficiency. Cyclist also makes use of the
software-programmable tiles to provide high visibility, with support
for interactive testing, debugging and evaluation.

Cyclist’s benefits are that it is:

• efficient to compile to: 10–100× faster than FPGA,
• efficient to run:¡ 1–10× slower than FPGAs,
• quick to probe any signal: no recompile necessary, and
• easy to map large designs: high capacity plus graceful slow-

down with size.

In the rest of the paper, we first compare Cyclist against earlier
related work, then describe the hardware architecture and software
toolflow. We additionally present a user-friendly interactive debug-
ging platform. Finally, the system is evaluated using a range of large,
real-world RTL designs.

II. RELATED WORK

The cheapest and lowest-performance form of emulation uses
general-purpose computers running emulation code. Newer software
emulators compile RTL into efficient C++ code that implements
the exact function and timing semantics of the design [4]. This
approach provides fast compile times, full visibility, and can handle
large designs, limited only by host memory capacity. The main
disadvantage is emululation speed, with target emulations tending
to run in the KHz range, creating onerous wait periods for long
simulations on large designs.

Another common emulation approach is map the RTL design to
FPGA boards [5], [6]. The primary advantages are that the FPGA
boards can run a design with target clock rates around the 10–
50MHz rate, and the FPGAs boards represent a modest additional
expense. Unfortunately, mapping designs intended for a custom
ASIC to an FPGA is challenging, as the FPGAs available in a
given generation have much lower capacity than ASICs in the same
technology generation. Heroic emulation design efforts are necessary
when designs are bigger than what will fit in a single FPGA [7] [8],
and often, multi-FPGA emulations run much slower, dropping to the

sub-1 MHz range due to chip-chip communication. Partitioning across
multiple FPGAs is usually done manually, although tools are now
available for automatic partitioning [9]. One of the greatest challenges
in using FPGAs for emulation, is that visibility is poor. Often the
FPGA emulation must be re-synthesized to observe a different set of
internal signals.

Some of the earliest work in building specialized engines for
hardware emulation were the IBM Yorktown Simulation Engine [10]
(YSE) and the IBM Engineering Verification Engine [11] (EVE). YSE
and EVE are essentially simple 4-bit processors that are connected
by a crossbar network. The modern-day Palladium machines are an
evolution of these earlier ideas [6], and can handle up to 2 billion
gates, yield up to 4MHz target frequency, and support up to 512
users. The tool flow can compile up to 35M gates / hour on a single
PC, provide full visibility to all signals with little slowdown, and
integrates with logic and power simulation, SystemC, and prototype
hardware. The main downside to the Palladium machines are their
high cost, being priced in the several million dollars range due to the
low effective capacity of the design.

Cyclist uses a similar network-of-specialized-processors approach
as the dedicated simulation engines, but maps designs at the RTL-
operator level instead of the gate-level to increase capacity, and uses a
mesh network rather than a crossbar to provide better scaling to larger
numbers of emulation engines. The Cyclist toolflow is responsible for
scheduling all the emulation traffic across the inter-tile network.

Malibu [12] is a recent emulation system that is again a statically
scheduled network of processors. Malibu differs from Cyclist in
having a fine-grained FPGA subsystem on each processor and a
wide-word VLIW instruction format. Cyclist is more dynamically
scheduled than Malibu, supporting interlocked dataflow execution
with less stalling, and also provides novel debugging support for
triggering, tracing, snapshotting, and stepping.

In summary, Table I shows various simulation options with which
to compare Cyclist. In short, Cyclist is a low cost emulation design
which makes it easy to map designs, has fast compilation and run
speeds, allows visibility at speed without recompilation and in circuit.

III. CYCLIST ARCHITECTURE

In this section, we describe the architecture of the Cyclist hardware
platform. A Cyclist machine consists of a number of computational
elements, known as “tiles”, connected by an on-chip network. The
current Cyclist implementation uses five-stage RISC-like processors
as tiles, which are connected by a statically-scheduled mesh network.
Each tile’s network ports are register-mapped and interlocked.



name ease of compiler run visibility visibility in cost
mapping speed speed speed recompile? circuit?

Verilog easy fast slow slow no no low
C++ easy fast med slow yes no free

FPGA hard slow fast fast yes yes med
Palladium easy fast fast fast no yes high

Cyclist easy fast fast fast no yes med

TABLE I: Comparison of various simulation options according to a number of important simulation attributes.

op dst x iy y z in out
5b 4b 5b 1b 5b 5b 2b 4b

TABLE II: Cyclist RISC-style instruction format including one destination
specifier, three operand specifiers x, y, and z, and one network route specified
by in and out. The y field holds an immediate when iy is one. For certain
instructions, z is an immediate specifying the number of mask bits with which
to mask the result.

I$ Decode RF D$

Net OutNet InPC

fetch decode reg/net read execute write-back

Fig. 3: Cyclist five stage pipeline.

A. The Cyclist Pipeline

Each Cyclist tile consists of a 32-bit RISC-like pipeline that is
tightly coupled with the on-chip network. Cyclist uses a proprietary
RISC ISA, as shown in Table II. There are 32 architectural registers,
and emulation-specific features such as bitwidth masking of all
instructions and direct network read and write are included to enhance
performance on common operations. In a significant departure from
general-purpose chips, there are no control flow instructions, as
they are not used by the scheduled logic emulation code. Some
additional emulation-specific instructions are rst for reset, mux for
conditionals, log2 for find highest bit, and cat for concatenate two
fields. A diagram of the Cyclist pipeline is shown in Figure 3.

Each tile has access to two large on-chip SRAMs: the code memory
and the data memory. The code memory stores the instructions that
each Cyclist tile executes. Each instruction is 32 bits wide and

op d x y z
special

nop
inputs

rst d
lit d val

logical
not d x w
and d x y
or d x y
xor d x y
eq d x y
neq d x y
mux d c t e
log2 d x w

bits
lsh d x n
rsh d x n w
rsha d x n w
cat d x y wy

arithmetic
add d x y w
sub d x y w
lt d x y w
gte d x y w
mul d x y w

state
ld d a e
st a x a e
ldi d a
sti a x a

TABLE III: 24 instructions necessary for implementing Cyclist RTL func-
tionality.

consists of an ALU operation in addition to a network operation
(either of which can be NOPs). The data memory provides storage
for target design state as well as register spills. These two memories
determine the size of design that can be emulated on a Cyclist chip:
larger memories allow for larger designs to be emulated at the cost
of emulation speed, as area that could be used for ALUs is taken by
SRAMs.

In the presented Cyclist implementation, both the code and data
memories are 1024 words long (32kbit). These sizes were chosen
in order to hit a target clock of 1MHz when fully utilized; however,
capacity can be increased at the cost of lower simulation speed when
fully utilized and a slower critical path.

The biggest difference between a Cyclist tile and a standard RISC
processor is that Cyclist tiles have no control-flow instructions. Aside
from the implicit loop around all instructions execution is sequential,
and aside from interlocking on the network ports there are no
stalls. This allows for an extremely simple pipeline, which is key
to achieving a high clock rate while keeping area small.

B. The Cyclist Network

Cyclist’s on-chip network is responsible for feeding each tile
with data for execution, and it is therefore a first-order performance
constraint. Th network was designed to be low latency, handle fanout
efficiently, have a simple hardware implementation, and be easy to
schedule for. A block diagram of Cyclist’s on-chip network is shown
in Figure 4.

The on-chip network consists of an interlocked, NSEW-mesh
network. Each compass direction consists of a pair of one element
blocking queues with one used for input and one used for output.
In order to avoid physical overhead for routing, tiles are responsible
for moving data from inputs to outputs; routing across the chip is
done statically at design compilation time. Each instruction can read
from up to one network input port, compute, and then broadcast
to any number of network output ports (specified using the out
field and shown in Table II), where the network output value can
be directly from the network input or from the result of the compute.
Any arithmetic instruction may use a network port as any of its input
or output operands. Instructions specifying the network destination
register utilize the network output bitmask, which permits multicast
of their writeback values to any subset of adjacent tiles. If the
network ports are unused for a given arithmetic instruction, a network
operation may be performed in parallel, allowing a higer degree of
instruction-level parallelism. Careful scheduling of network traffic
allows for efficient handling of fan-out to multiple tiles.

The pipeline is interlocked and will stall if space on an output
queue is full or an input queue has no data. This allows the compiler
to avoid emitting spurious NOPs while still maintaining a fully static
schedule. This interlocking affords a significant increase in code
density without which Cyclist would not be a practical machine.

Cyclist includes a host interface on each tile and connected as
a debug scanchain to the host as shown in Figure 4. The interface
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Fig. 4: Tiled emulation machine with statically scheduled mesh network
(shown in red) and debug scanchain (shown in green).

supports peek and poke commands for reading and writing host/target
architectural state, and a step command for stepping the target
machine n target cycles. Tiles can be individually addressed or
broadcast to. Every instruction includes a trace bit, that when set,
sends out the instruction result out the debug scanchain.

C. ASIC and Performance Results

We have pushed our Cyclist design through Synopsis DC and ICC 1

Placed-and-routed results using models from a 45nm CMOS process
produced favorable results.

tile area = 0.069 mm2 / tile
array speed = 1.97GHz

Given this area, we could, for example, fit 280 tiles and a RISC-
V [13] Rocket host CPU on a 3mmx6mm die in a 45nm process. The
area of a given tile breaks down as shown in Figure 5. Approximately
60% of the area is memory, 16% is register files, and finally 9.2%
is debug interface area. Finally, the static power reported from the
Synopsis tools is 16.8mW per tile.

A number of Chisel benchmark circuits were synthesized for a
Cyclist as listed in Table IV. Cyclist is able to achieve MHz target
cycle frequencies as shown in Figure 6. Figure 7 shows the results
of a comparison of Cyclist to Chisel generated C++ simulation
performance and Figure 8 shows the simulation performance relative
to Xilinx Kintex-7 FPGA2 using Xilinx Vivado 2013.4 tools3. Cyclist
is approximately 11.0x faster than C++ and is 16.8x slower than an
FPGA4.

IV. CYCLIST WORKFLOW

Despite the fact that Cyclist was designed to be a target that
is easy to map to, most of the implementation complexity lies in
the toolchain used to map designs for execution. Cyclist currently

1The only outstanding issues with our ICC results are related to closing
timing with external delays in off-chip connections. Future work will include
more realistic chip-level IO.

2XC7K325TFFG900-2
3We were only able to synthesize a subset of the benchmarks on our FPGA.
4Comparing Cyclist fabbed with 28nm technology against an FPGA fabbed

using 28nm technology is a slightly unfair comparison.

Fig. 5: Area breakdown for single Cyclist tile. Tile area = 0.069 mm2 in a
major 45nm CMOS process.
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Fig. 6: Absolute run time performance of various benchmarks on Cyclist in
MHz range. Cyclist achieves desired MHz target cycle frequency with an
overall average of 7.8 MHz target cycle frequency.
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Fig. 7: Relative run time performance of various benchmarks on Cyclist
compared to Chisel generated C++. Cyclist is on average 11.0x faster to
execute than C++.



type Cyclist RISC-V DSP
kind Single Tile Array Sodor Rocket

name Fix2 Fix3 Fix2x2 Fix3x3 RV322 RV325 RV32U RefChip SIFT FFT-64
size 654 665 2475 6140 1202 1470 1127 12579 1554 8449

TABLE IV: Series of benchmarks with given sizes in number of RTL graph nodes. Fix2 and Fix3 are two stage and three stage pipeline implementations of
Cyclist. RV322, RV325, and RV32U are educational RISC-V processors with two stage, five stage, and microcode microarchitectures. Refchip is an in order
RISC-V processor, called Rocket, with non blocking cache based uncore. N.B., RefChip’s verification on Cyclist is currently in progress. SIFT is a low level
SIFT feature extraction circuit. FFT-64 is a direct 64 input 32 bit FFT. The number of gates is often 10-20x number of RTL graph nodes.

Fix2 Fix3 Fix2x2 Fix3x3 RV322 RV325 RV32U ref SIFT FFT-64
target designs
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Fig. 8: Relative run time performance of various benchmarks on Cyclist
compared to FPGA (Xilinx 28nm Kintex-7). Cyclist is on average 16.8x
slower to execute than an FPGA.

assumes designs are written in Chisel [4] 5, UC Berkeley’s powerful
hardware construction language that supports multiple backends from
the same source description. The Cyclist toolchain is implemented
in phases that are somewhat similar to an FPGA toolchain (shown
in Figure9): first, high-level Chisel designs are mapped to Cyclist
instructions, then these instructions are placed on tiles in the fabric,
and finally each instruction is scheduled for execution.

The mapping phase is the simplest: during circuit elaboration
Chisel builds a graph that contains every node and operation neces-
sary to synthesize the circuit. Each one of these nodes maps directly
to a set of Cyclist instructions, so all that is required is to emit the
corresponding code.

Instructions are placed on tiles by using simulated annealing. The
cost function is the sum of the Manhattan distance between every
node in the graph, which approximates the communication cost when
executed on the network. This cost function has the advantage of
being linear, which allows us to quickly compute the cost of a
perturbed graph by only calculating the cost difference caused by
the perturbation. This allows for a fast parallel variant of simulated
annealing [14] to be used that should scale well. Finally, nodes are
only moved if they result in an admissible layout that doesn’t over-
subscribe any tile resources. This means, that layouts are always
admissible during the entire annealing process.

Instructions are scheduled for execution by simulating an execution
of the computation graph on a virtual Cyclist-like machine, recording
a trace of the execution including network routing, and emitting that
trace on the statically scheduled machine. This allows the scheduler
to be fairly agnostic of actual machine details at the cost of only
allowing for a greedy schedule to be performed. As the toolchain is

5 The conceptual input to Cyclist is actually RTL, and thus, in principal
any synthesizable RTL description is runnable on Cyclist.

designed to execute quickly, it seems a greedy algorithm is probably
a sane approach so we just stuck with it.

Target registers and memories are mapped to host memory. During
scheduling, host registers are allocated and potentially spilled to
remaining host memory. The final schedule is split into two phases:
a combinational phase for computing outputs and next state values,
and a state update phase for committing next state such as target
registers and memories.

Routing is optimized to minimize fanout routing. Instead of send-
ing out fanned out data one by one to multiple destinations, during
scheduling, fanout data is arranged step by step according to local
ports traversed, where paths sharing local ports are coalesced. The
result is a spanning tree of the fanout paths with only O(logn) of
the amount of routing work required.

After producing a static schedule, a peephole optimizer removes
unnecessary NOPs in order to compress the code for Cyclist. As
an additional benefit, Cyclist is able to execute code in a spatially
pipelined fashion.

Figure 10 shows the compilation time for the various benchmarks
shown in Figure IV. Figure 11 shows the results of a comparison of
Cyclist to C++ compiler speed on Chisel generated C++ and Figure 8
shows the Cyclist’s compiler performance using Xilinx Vivado 2013.4
tools while targeting Xilinx Kintex-7 FPGA. Cyclist achieves an
average 7.7x slow down over C++ and an average 3.0x speed up
over an FPGA.

A. “Pay as You Go” Compilation

Cyclist has been designed to make it easy to compile for, and, as a
result, its runtime performance improves with increased compilation
time as shown in Figure 13. From this we can also see that
our compiler performance numbers shown in Figures 10, 11, and
12 are conservative because the compiler is able to hit the peak
runtime performance with about 1/3 the annealing steps allotted.
With the addition of fast snapshot support, we can update the layout
periodically and gradually improve runtime performance. We do this
by running the compiler in parallel and periodically loading a new
layout.

We update a new layout by saving out a snapshot, loading a new
layout, and then restoring saved snapshot into new layout. Snapshots
contain the entire circuit state. Snapshots are run at a regular interval
as shown in Figure 14. Figure 15 shows that by running compiler in
parallel and periodically updating the layout, Cyclist is faster than all
emulation techniques until about a billion cycles.

Cyclist holds all snapshot state in host memory. State can be
ordered once to give offsets to each piece of state. A save snapshot
command is just a sequence of peek packets, and similarly, a restore
snapshot command is a sequence of poke packets with stored state as
values. Save and restore snapshot commands can be prepared ahead
of time and sent out in order in pipeline fashion one packet per cycle.
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Fig. 9: Compilation workflow for Cyclist involving elaboration, layout, and scheduling phases.
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Fig. 10: Absolute compile time performance of various benchmarks on Cyclist
in seconds range.
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Fig. 11: Relative compile time performance of various benchmarks on Cyclist
compared to Chisel generated C++ in g++-4.8 using -O3. Cyclist is on average
7.7x slower to compile than C++.

V. INTERACTIVE VISIBILITY DEBUGGING

Full visibility is a highly sought-after debugging feature for emu-
lators which allows users to query the value of any internal circuit
wire. Even after extensive unit testing of hardware components in
isolation, it is still common for components to interact incorrectly.
Frequently in these scenarios, the easiest method for debugging the
circuit is to observe the internal signals sent among the components.
Furthermore, designers do not typically know which internal wires
they need to observe in order to find the inconsistency. The ultimate
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Fig. 12: Relative compile time performance of various benchmarks on Cyclist
compared to FPGA (Xilinx 28nm Kintex-7) using Vivado. Cyclist is on
average 3.0x faster to compile for than an FPGA.
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in debugging performance is full visibility: the ability to track any
set of signals, starting at any cycle.

While conceptually simple, full visibility comes with a heavy
performance cost. Recording the value of every wire on every
cycle requires an enormous amount of bandwidth. For example, on
software simulators, generating a full VCD (value change dump)
trace results in approximately a 20x slowdown compared to recording
only top-level wires. Circuit emulation on FPGAs brings additional
complications, requiring design recompilation to adjust visibility of
signals to integrated logic analyzers.

To avoid the performance hit of providing full visibility, we
introduce the notion of “interactive visibility”. During emulation, a
snapshot of the state of the circuit is periodically saved. When the
user requests the value of a specific wire on a specific cycle, the
nearest snapshot is loaded back into the circuit, and the value of the
wire is computed by rerunning the circuit until it reaches the desired
cycle. The delay between requesting and receiving the value of a wire
on a given cycle, is equal to the time needed to emulate the circuit
forwards from the nearest snapshot to the desired cycle. We can adjust
the frequency at which we take snapshots until the maximum delay
is within acceptable interactive latency (e.g. 500 milliseconds). Thus
we can interactively observe any internal wire, on any cycle, with
tolerable latencies.

We have implemented a demonstration debugger, called Scope, that
provides interactive visibility. The main screen shows a list of wires
and their values across a range of cycles. Users are free to add any
wire to the list, to scroll backwards and forwards through time, and to
search backwards and forwards in time for a given trigger expression
to evaluate to true. Scope is essentially a visual interface over two
basic commands, view and find.

view (w1, w2, . . . , wm) from n1 to n2

find e from n1 to n2

View takes as input a list of wires, and a start and end cycle, n1 and
n2, and returns the values of each wire on every cycle between n1 and
n2. Find takes a start and end cycle, n1 and n2, and returns the first
cycle where the trigger expression e evaluates to true, or -1 if e never
evaluates to true within n1 and n2. Trigger expressions are simple
logical and arithmetic expressions based on signal values. Cyclist
provides hardware support for these interactive visibility primitives

t

sp snapshot =

lo hi
traceseek

last snapshot

Fig. 16: View command shown over time. To run a view command, we first
load the nearest snapshot, run to the first requested cycle, and then run until
the last requested cycle with tracing of requested wires enabled.

through fast snapshotting of state and dynamic insertion of trigger
circuitry to running circuits. These features are sufficient to provide
a low-latency, high throughput experience.

During emulation, Cyclist periodically saves a snapshot of the
current circuit state. To implement the view command, we load the
nearest snapshot to n1 into Cyclist, and run the circuit forwards until
n1. We then selectively trace the desired wires from n1 to n2. See
Figure 16 for a picture of the view command over time. To implement
the find command, we first compile the trigger expression to a small
combinational circuit and add it to the design under test. We load the
nearest snapshot to n1 into Cyclist, and selectively trace the result
of the trigger expression until n2. The host will scan through the
returned results to find the first cycle at which the trigger expression
evaluated to true.

Trigger expression compilation runs in time proportional to only
the size of the trigger expression. First, the trigger expression nodes
are added to the existing positioned graph, and then simulated an-
nealing is applied selectively to the trigger expression nodes resulting
in positions for these nodes. From there, the trigger expression nodes
are scheduled resulting in placed and scheduled instructions. These
instructions are then concatenated to the existing instructions, and this
combined code is loaded onto Cyclist. This method can also support
sequential trigger expressions that depend on the values of wires
across multiple clock cycles by compiling them into feed-forward
circuits containing registers as well as combinational logic.

In addition to allowing for user-friendly features, the combination
of circuit-annotation-based triggers and periodic snapshots requires
much less bandwidth than recording the values of every internal
wire on every cycle, and we show here that it actually has a
negligible performance impact. For a smooth user experience, we
require that the maximum delay for the view command to respond
be 500 milliseconds. This forces us to take a snapshot for every
500 milliseconds of compute: rt = 500ms. The offload time is
limited by the size of the snapshot and the bandwidth between Cyclist
and the final storage location of the snapshots. With an extremely
conservative estimate of 60MB/s off-chip bandwidth and worst-case
full utilization of a 1024-tile system with 4KB per tile, there is
a performance penalty of only 12% for emulation on Cyclist with
periodic snapshots.

Note that interactive visibility depends on the ability to restart
from a past cycle. We have thus far assumed that the complete state
of the circuit can be captured in snapshots, however this is not true
of external devices. To provide interactive visibility for circuits with
external inputs, we need the ability to rerun the circuit with the same
inputs observed during the initial run of the circuit. This can be
done by recording the inputs received on every clock cycle during
the initial run, and then replaying them when needed. Bandwidth
requirements can be reduced by compressing the inputs with VCD-
style compression.



VI. DISCUSSION AND FUTURE WORK

Our current Cyclist implementation represents one point in a broad
design space of architecture and tools with varying compile and run
time performance. Some compilation time improvements could come
from parallelizing the layout algorithm, clustering graph nodes by
lowering the complexity of the layout, and using a higher radix net-
work to make performance less dependent on layout. There are many
options for improving run time performance. The processor could
have more pipeline stages to reduce cycle time, instructions could be
made wider allowing more work per cycle, and the network could
be made flatter to reduce the number of hops between processors.
On the ASIC side, better floorplanning and separate clock domains
per tile could increase the clock rate. On the compiler front, a better
scheduler would reduce the number of instructions, and some form
of time space scheduling would potentially produce better run time
performance.

Although building an ASIC would give the best raw performance,
because of FPGAs great density and economies of scale, constructing
a Cyclist FPGA overlay might be an attractive near term option. The
idea would be to program an FPGA with a large array of Cyclist tiles
and then to use Cyclist tools from then on. Very initial experiments
indicate we could achieve 110MHz host clock rate on a mid range
Xilinx FPGA.

Cyclist is an emulation system but holds promise for more general
computing applications especially those applications that FPGAs are
currently used for. A number of changes would allow it to better
execute DSP applications for example. Cyclist’s debug support, with
its snapshotting, tracing, and search, would certainly make it a more
productive development platform than what FPGAs currently offer.
It could be argued that this debug support would be more generally
useful for other multiprocessor architectures or SOCs which are
notoriously difficult to debug.

VII. CONCLUSIONS

We presented Cyclist, a new cycle-accurate emulation system, that
accelerates hardware development. It does this by both decreasing
the combined compile + run time and by providing powerful and
efficient debugging support including interactive visibility and fast
trigger expression compilation. In short, Cyclist is a cost effective
emulation design which makes it easy to map designs, has fast
compilation and run speeds, and allows visibility at speed without
recompilation and in circuit. Cyclist represents a promising direction
in reconfigurable computing combining good ideas from both the
software and hardware worlds.
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